Mark Scheme (Results) Summer 2013 GCE Mechanics 2 (6678/01) ## **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com. Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful. www.edexcel.com/contactus # Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk Summer 2013 Publications Code UA036421 All the material in this publication is copyright © Pearson Education Ltd 2013 #### **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. #### **EDEXCEL GCE MATHEMATICS** ## **General Instructions for Marking** - 1. The total number of marks for the paper is 75. - 2. The Edexcel Mathematics mark schemes use the following types of marks: - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated. - A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned. - **B** marks are unconditional accuracy marks (independent of M marks) - Marks should not be subdivided. - 3. Abbreviations These are some of the traditional marking abbreviations that will appear in the mark schemes: - bod benefit of doubt - ft follow through - the symbol $\sqrt{}$ will be used for correct ft - cao correct answer only - cso correct solution only. There must be no errors in this part of the question to obtain this mark - isw ignore subsequent working - awrt answers which round to - SC: special case - oe or equivalent (and appropriate) - dep dependent - indep independent - dp decimal places - sf significant figures - * The answer is printed on the paper - The second mark is dependent on gaining the first mark - 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks. - 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. - 6. If a candidate makes more than one attempt at any question: - If all but one attempt is crossed out, mark the attempt which is NOT crossed out. - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt. - 7. Ignore wrong working or incorrect statements following a correct answer. - 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme ### **General Rules for Marking Mechanics** - Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved. - Omission or extra g in a resolution is accuracy error not method error. - Omission of mass from a resolution is method error. - Omission of a length from a moments equation is a method error. - Omission of units or incorrect units is not (usually) counted as an accuracy error. - DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded. - Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF. - Use of g = 9.81 should be penalised once per (complete) question. - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question. - In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question. - · Accept column vectors in all cases. - Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft. | Question
Number | Scheme | Marks | Notes | |--------------------|--|-----------------------------------|---| | 1. | Use of $\mathbf{I} = \mathbf{m}\mathbf{v} - \mathbf{m}\mathbf{u}$
$2\mathbf{v} = (3\mathbf{i} + 6\mathbf{j}) + 2(\mathbf{i} - 4\mathbf{j})$
$\mathbf{v} = 2.5\mathbf{i} - \mathbf{j}$
Speed = $\sqrt{2.5^2 + 1^2} = \sqrt{7.25} (= 2.69 (\text{m s}^{-1}))$ | M1
A1
A1
M1
A1
[5] | Must be subtracting. Condone subtraction in the wrong order Correct unsimplified equation (= 5i - 2j) Use of correct Pythagoras with their v Exact form or 2s.f. or better. Watch out for fortuitous answers from 2.5i + j. | | Question
Number | Scheme | Marks | Notes | |--------------------|--|-------------------|---| | 2a | Work done = $15\mu R = 15 \times 0.4 \times 3g \cos 20^{\circ}$ | M1 | $F_{\text{max}} = \mu \times 3g \cos 20 (11.05)$. R must be resolved but condone trig confusion. | | | | M1 | $15 \times$ their F_{max} . Independent M
$15 \times F_{\text{max}} + \dots$ is M0 | | | $= 18g\cos 20 = 166 (J)$ | A1 [3] | or 170 (J) | | 2b | Energy: WD against F + GPE + final KE = initial KE | | Must include all four correct terms (including resolving). Condone sign errors and trig confusion. Any sign errors in the KE terms count as a single error. Follow their WD | | | their WD + 3g sin 20°×15 + $\frac{1}{2}$ 3v ² = $\frac{1}{2}$ 3×20 ² | M1A2ft | -1ee Follow their WD | | | $v = 13.7 (\text{m s}^{-1})$ | A1 [4] | or 14 | | Or 2b | $3a = -0.4 \times 3g \cos 20 + 3g \sin 20$ and use of $v^2 = u^2 + 2as$ | M1 | Complete method. Their F_{max} +component of weight | | | | A1ft | A correct equation with their F_{max} .
Allow for $a = +7.03$ acting down the slope $a = -7.035$ | | | $v^2 = 20^2 + 2 \times a \times 15 (= 188.93)$
$v = 13.7 \text{ (m s}^{-1})$ | A1ft
A1
[4] | Correct equation for their a or 14 (m s ⁻¹) | | Question
Number | Scheme | Marks | Notes | |--------------------|--|----------|--| | 3a | $v = 0 = 2t^2 - 14t + 20$ | M1 | Set $v = 0$ | | | =2 t-2 t-5 | M1 | Solve for <i>t</i> | | | t=2 or $t=5$ | A1 [3] | | | | There are many different approaches to part (b). The allocation M1: A method to find the time when the velocity is a minimum M1: Evaluate the speed at that time | | o M marks is | | e.g. b | t = 0 , $v = 20$ (m s ⁻¹) | B1 | | | | a = 4t - 14 = 0 | M1 | | | | $t = \frac{7}{2}$, $v = 2 \times \frac{3}{2} \times \frac{-3}{2} = \frac{-9}{2}$ | M1A1 | Must see ±4.5 | | | Max speed = 20 ms^{-1} | A1 [5] | Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only. | | balt1 | $t = 0$, $v = 20 \text{ (m s}^{-1})$ | B1 | | | | Sketch with symmetry about their $t = 3.5$ | M1 | | | | v(their 3.5)
-4.5 | M1
A1 | Evaluate <i>v</i> at min. Correct work | | | Max speed = 20 ms-1 | AI | Clearly stated & correct conclusion. | | | Wax speed – 20 ms | A1 | Depends on the two M marks. From correct | | | | [5] | solution only. | | b alt 2 | t = 0 , $v = 20$ (m s ⁻¹) | B1 | • | | | Justification of minimum or tabulate sufficient values to | | | | | confirm location | M1 | | | | Evaluate <i>v</i> at min. | M1 | | | | Correct work | A1 | | | | Correct conclusion. Depends on the two M marks | A1 [5] | Clearly stated & from correct solution only. | | Question
Number | Scheme | Marks | Notes | |--------------------|---|----------|--| | b alt 3 | t = 0 , $v = 20$ (m s ⁻¹) | B1 | | | | Complete the square as far as $\left(t - \frac{7}{2}\right)^2$ | M1 | | | | $2\left(t-\frac{7}{2}\right)^2-\frac{9}{2}$ | M1A1 | | | | Max speed = 20 ms^{-1} | A1 [5] | Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only. | | c | $\int 2t^2 - 14t + 20 dt = \frac{2}{3}t^3 - 7t^2 + 20t(+C)$ | M1
A1 | Integration. Need to see majority of powers going up All correct. Condone <i>C</i> missing | | | Distance = $\left[\frac{2}{3}t^3 - 7t^2 + 20t\right]_0^2 - \left[\frac{2}{3}t^3 - 7t^2 + 20t\right]_2^4$ | M1
A1 | Correct method to find the distance, for their 2 Correct unsimplified | | | $= 2 \times \left[\frac{2}{3} t^3 - 7t^2 + 20t \right]^2 - \left[\frac{2}{3} t^3 - 7t^2 + 20t \right]_4$ $= 2 \left[\frac{16}{3} - 7 \times 4 + 40 \right] - \left[\frac{2 \times 64}{3} - 7 \times 16 + 80 \right] = 24 \text{ (m)}$ | A1 [5] | | | Question
Number | Scheme | Marks | Notes | |--------------------|---|-----------------------|---| | 4a | E 2 m P D D C | | For a valid division into basic elements: e.g. pair of rhombuses | | | | B1
B1 | Correct mass ratios for parts and the arrow shape Correct vertical distances from a horizontal axis | | | $2\overline{y} = 1 \times \frac{1}{2} + 1 \times \frac{1}{2}$ $\overline{y} = 0.5 \text{ (m)}$ | M1
A1
A1
[5] | Moments equation about a horizontal axis
Correct equation for their axis | | a alt 2 | AOB OBCD DOE whole 1 2 1 4 0 1 0 \overline{y} | B1
B1 | Rhombus + two triangles | | | $4\overline{y} = 2 \times 1$ | M1A1 | Moments equation | | | $\overline{y} = 0.5 \text{ (m)}$ | A1 [5] | | | Question
Number | | Scheme | | Marks | Notes | |--------------------|--|---|-----|-------------------|-------------------| | a alt 3 | Hexagon AOE 6 2 0 -1 | $\frac{F}{y}$ whole $\frac{4}{\overline{y}}$ | | B1
B1 | Hexagon – rhombus | | | $4\overline{y} = 02 \times 1$ $\overline{y} = 0.5 \text{ (m)}$ | | | M1A1
A1
[5] | | | a alt 4 | h = height of each t Distances of c of m | from horizontal through | | | 4 triangles | | | $ \begin{array}{c cccc} p & q \\ \hline 1 & 1 \\ 0 & \frac{2}{3}h\cos 30 \end{array} $ | | ole | B1
B1 | | | | $4\overline{y} = 2 \times 1 \times \frac{2\sqrt{3}}{3} \operatorname{co}$ | $s30\bigg(=\frac{4\sqrt{3}}{3}\times\frac{\sqrt{3}}{2}=2\bigg)$ | | M1A1 | | | | $\overline{y} = 0.5 \text{ (m)}$ | | | A1 [5] | | | Question
Number | Scheme | Marks | Notes | |--------------------|--|----------------------------|--| | | In 4(b) the first two marks are M1: Indentify a triangle, with one angle correct, and attempt to fin A1ft: 2 sides correct, follow their answer to (a) DM1: Work sufficient to be able to go on to find the required angl A1ft: follow their answer to (a) DM1: Find the required angle. Dependent on the preceding M1 A1 Correct answer for example | | | | 4b | A O | | | | | $2\cos 30 = \sqrt{3}$, "0.5"+ $2\sin 30 = 1.5$
$\tan \theta = \frac{\text{their 1.5}}{\text{their }\sqrt{3}}$
Required angle = $\theta - 30 = \tan^{-1} \frac{1.5}{\sqrt{3}} - 30 = 40.89 30 = 10.9^{\circ}$ | M1A1ft DM1 A1ft DM1 A1 [6] | Their 0.5 & their $\sqrt{3}$
Use of tan in a right angled triangle.
Accept the reciprocal
Correct for their angle. Ft their 0.5
Correct strategy to find required angle
e.g. " θ "-30°
or 90°-30°-" θ "
Accept 11°, 10.9° or better | | Question
Number | Scheme | Marks | Notes | |--------------------|---|-------------|--| | 4balt | E | | | | | 2 m θ 0 120° d 0.5 m | | | | | SAS in a relevant triangle | M1A1ft | Their 0.5 | | | $d^2 = 2^2 + 0.5^2 - 2 \times 2 \times 0.5 \cos 120 = 5.25$ | DM1
A1ft | Correct cosine rule. Correct equation. Their 0.5 | | | $\frac{\sin\theta}{0.5} = \frac{\sin 120}{\sqrt{5.25}}$ | DM1 | | | | $\theta = 10.9^{\circ}$ | A1 [6] | | | Question
Number | Scheme | Marks | Notes | |--------------------|--|----------|--| | 5a | F C mg M | M1 | Moments about A. Requires all three | | | Moments about A: | IVII | terms and terms of correct structure (force x distance). Condone consistent trig confusion | | | $bF = a\cos\theta mg + 2a\cos\theta mg (= 3a\cos\theta mg)$ | A2 | -1 each error | | | $F = \frac{3amg\cos\theta}{b} *Answer given*$ | A1 [4] | | | | $3amg\cos\theta\sin\theta$ | M1 | Resolve horizontally. Condone trig confusion | | 5b | $\Rightarrow: H = F \sin \theta = \frac{3amg \cos \theta \sin \theta}{b}$ | A1 | RHS correct. Or equivalent. | | | $\uparrow: 2mg = \pm V + F\cos\theta$ | M1
A1 | Resolve vertically. Condone sign error and trig confusion Correct equation | | | $\pm V = 2mg - \frac{3amg\cos\theta}{b} \times \cos\theta \left(= 2mg - \frac{3amg\cos^2\theta}{b} \right)$ | A1 [5] | RHS correct. Or equivalent | | | | | | | Question
Number | Scheme | Marks | Notes | |--------------------|--|--------|--| | 5c | $2mg - \frac{3amg\cos^2\theta}{b}$ | M1 | Use of tan, either way up. V, H, F | | | $\frac{\frac{b}{3amg\cos\theta\sin\theta}}{b} = \tan\theta$ | A1 | substituted. Correct for their components in θ only | | | $\frac{2b - 3a\cos^2\theta}{3a\cos\theta\sin\theta} = \frac{\sin\theta}{\cos\theta}$ | DM1 | Simplify to obtain the ratio of a and b, or equivalent | | | $\Rightarrow 2b - 3a\cos^2\theta = 3a\sin^2\theta \Rightarrow 2b = 3a, \frac{a}{b} = \frac{2}{3}$ | A1 [4] | | | 5c alt 2 | The centre of mass of the combined rod + particle is $\frac{3}{2}a$ from A | M1A1 | | | | F $2mg$ | | | | | 3 forces in equilibrium must be concurrent $\Rightarrow b = \frac{3}{2}a$ | M1 | Not on the spec, but you might see it. | | | $\Rightarrow \frac{a}{b} = \frac{2}{3}$ | A1 [4] | | | alt c 3 | R acts along the rod, so resolve forces perpendicular to the rod.
$F = mg \cos \theta + mg \cos \theta$ | M1 | Resolve and substitute for <i>F</i> | | an c s | $2mg\cos\theta = \frac{3amg\cos\theta}{b}$ | A1 | | | | | DM1 | Eliminate θ | | | $\Rightarrow \frac{a}{b} = \frac{2}{3}$ | A1 [4] | | | Question
Number | Scheme | Marks | Notes | |--------------------|---|-------|---| | 14 4 | R acts along the rod. Take moments about C | | Moments about B gives | | alt c 4 | $mg\cos\theta \ 2a - b = mg\cos\theta \ b - a$ | M1 A1 | $2a-b$ $F = amg \cos \theta$ and substitute for F | | | $2a-b=b-a$, $\Rightarrow \frac{a}{b} = \frac{2}{3}$ | DM1A1 | | | | | [4] | | | a alt 5 | Resultant parallel to the rod $\Rightarrow R = 2mg \sin \theta$ | M1 | Substitute for V , H and R in terms of θ | | c alt 5 | And $V^2 + H^2 = R^2$ | IVI I | | | | $2mg\sin\theta^{2} = \left(\frac{3amg\cos\theta\sin\theta}{b}\right)^{2} + \left(2mg - \frac{3amg\cos^{2}\theta}{b}\right)^{2}$ | A1 | | | | Eliminate θ | DM1 | | | | $\Rightarrow \frac{a}{a} = \frac{2}{a}$ | A1 | | | | b^{-3} | [4] | | | Question
Number | Scheme | Marks | Notes | |--------------------|--|-----------------|---| | 6a | Conservation of energy: | M1 | Energy equation must contain the correct terms, but condone sign error. | | | $\begin{vmatrix} \frac{1}{2}mu^2 + mg \times 8 = \frac{1}{2}m & 2u \end{vmatrix}^2 mu^2 + 16mg = 4mu^2$ | A2 -1ee | Correct unsimplified | | | $16mg = 3mu^2, u = \sqrt{\frac{16g}{3}}$ | DM1 | Solve for <i>u</i> | | | u = 7.2 | A1 [5] | Accept 7.23. Accept $\sqrt{\frac{16g}{3}}$ | | 6b | Vertical distance: $-8 = u \sin \theta \times 2 - \frac{g}{2} \times 4$ | M1 | Condone sign errors or trig error. <i>u</i> must be resolved. | | | $\sin \theta = \frac{2g - 8}{2u} = 0.802$ | A2 -1ee | Correct equation for their <i>u</i> . | | | $\theta = 53.3^{\circ}$ | A1 [4] | or 53° | | 6с | Min speed at max height, i.e. $u \cos \theta$
= 4.3 (m s ⁻¹) | M1
A1
[2] | Condone consistent trig confusion with part (b) or 4.32 (ms ⁻¹) | | Question
Number | Scheme | Marks | Notes | |--------------------|--|--------|--| | 7a | CLM: $2mu = 2mv + 3mw$ | M1 | All three terms required, but condone sign errors | | | • | A1 | | | | Impact: $w-v=eu$ | M1 | Condone sign error, but must be subtracting and <i>e</i> must be used correctly. | | | | A1 | Penalise inconsistent signs here. | | | Subst $v = w - eu$: $2u = 2 w - eu + 3w = 5w - 2eu$ | DM1 | Solve for w. Requires the two preceding M marks | | | $w = \frac{2}{5} 1 + e u$ *Answer Given* | A1 | | | | | (6) | | | 7b | $w = \frac{7u}{10}$ | B1 | Seen, or implied by correct speeds. | | | • | M1A1 | Both needed | | | CLM: $3mw = 3mx + 4my$ and Impact: $y - x = \frac{3w}{4}$ | | | | | Subst: $3w = 3x + 4\left(x + \frac{3}{4}w\right)$ | DM1 | Solve for <i>x</i> or <i>y</i> . Dependent on the preceding M mark | | | x=0, | A1 | | | | $x = 0, y = \frac{3}{4}w = \frac{21}{40}u$ | A1 | 0.525 <i>u</i> , | | | | (6) | | | 7c | $v = -\frac{u}{20}$ | B1 | Correct velocity of P | | | u = 21u = 23u | M1 | Correct use of their values and substitute for <i>e</i> . | | | Speed of separation = $\frac{u}{20} + \frac{21u}{40} = \frac{23u}{40}$ | | Check directions carefully | | | | A1 (3) | 0.575 <i>u</i> | | | | [15] | | | | | | | Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036421 Summer 2013 For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$ Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE